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We apply the Law of Total Probability to the construction of scale-invariant probability distri-
bution functions (pdf’s), and require that probability measures be dimensionless and unitless under
a continuous change of scales. If the scale-change distribution function is scale invariant then the
constructed distribution will also be scale invariant. Repeated application of this construction on
an arbitrary set of (normalizable) pdf’s results again in scale-invariant distributions. The invari-
ant function of this procedure is given uniquely by the reciprocal distribution, suggesting a kind
of universality. We separately demonstrate that the reciprocal distribution results uniquely from
requiring maximum entropy for size-class distributions with uniform bin sizes.
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INTRODUCTION

In 1881 [1] the astronomer and mathematician Simon Newcomb observed that the front pages of tables of logarithms
were more worn than later pages. In other words mantissas corresponding to quantities that had a smaller first digit
were more common than for quantities with a larger first digit. He argued that the distribution of “typical” mantissas
was therefore logarithmic. The physicist Frank Benford [2] rediscovered this in 1938 and provided more detail, for
which his name is now associated with this phenomenon.
By now it is well documented that the frequency of first digits D in the values of quantities randomly drawn from

an “arbitrary” sample follows Benford’s Law of Significant Digits, namely,

Bb(D) =
ln(1 +D)− ln(D)

ln(b)
=

∫ 1+D

D

dx

x · ln(b)
, (1)

where b is the arbitrary base for the logarithms and is commonly taken to be 10. We note that the probability of first
digit 1 for base 10 is log10(2)

∼= .30, far exceeding that for a uniform distribution of digits. The rightmost expression
in Eqn. (1) expresses Newcomb’s and Benford’s logarithmic distribution as the cumulative distribution function (cdf)
based on the reciprocal probability distribution function (pdf), which has been normalized to 1. The pdf that
underlies Benford’s Law is therefore the reciprocal distribution, r(x) ≡ c/x, with normalization constant c = 1/ ln b
when the random variable x ranges between 1/b and 1. We note that Eqn. (1) is base invariant (i.e., invariant under
a common change in the base of the various logarithms) and that the reciprocal pdf is scale invariant (a function f(x)
is said to be scale invariant if f(λx) = λp · f(x) for any p ∈ C). In this work we will concentrate on the emergence
of the reciprocal distribution under a variety of conditions. The invariant (or fixed-point) function of an iterative
procedure applied to distribution functions that are invariant under a continuous change of scales will be shown to
be the reciprocal distribution. Additionally, requiring maximum entropy for size-class distributions with uniformly
distributed bin sizes leads to the same function.
Very relevant to the discussion above is T. P. Hill’s proof in 1995 [3–6] that random samples chosen from random

probability distributions are collectively described by the reciprocal distribution, which is the pdf for the logarithmic
or Benford distribution. In Hill’s words: “If distributions are selected at random (in any “unbiased” way) and
random samples are then taken from each of these distributions the significant digits of the combined sample will
converge to the logarithmic (Benford) distribution.” Because of this, the latter has been appropriately characterized
as “the distribution of distributions,” as Hill’s theorem is in some sense the obverse (counterpart) of the Central Limit
Theorem for probability distributions with large numbers of samples.
Benford’s Law has been found to hold in an extraordinary number and variety of phenomena in areas as diverse as

physics [7–12], genomics [13], engineering [14] and among many others, forensic accounting [15]. Recently the number
of examples where it applies has been expanding rather rapidly.
In the 1960’s the need for understanding the constraints imposed in computation by finite word length and its

impact on round-off errors were behind the interest of many, including R. Hamming [16, 17], in Benford’s law.
Importantly, Hamming argued that repeated application of any of the four basic arithmetic operations (addition,

subtraction, multiplication and division) to numbers leads to results whose distribution of leading floating-point digits
approaches the logarithmic (Benford) distribution. Hamming further argued that if any one arithmetic operation
involves a quantity already distributed according to the reciprocal distribution, r(x), then the result of this and
all subsequent operations will result in quantities whose pdf for the leading floating-point digits is the reciprocal
distribution. Hamming called this property the “persistence of the reciprocal distribution” although a better word
might be contagiousness, since contact with the reciprocal distribution at any point in a calculational chain modifies
the remaining chain irrevocably.
In this paper we use elementary methods to explore the connection between Benford’s law, Hill’s theorem and

the “contagiousness” property of the reciprocal distribution. We will demonstrate this by constructing a simple but
comprehensive class of probability distributions that depends on a single random variable that is dimensionless and
unitless under a continuous change of scales. This class depends on an underlying pdf that is arbitrary, and which
can be sampled in a manner consistent with Hill’s Theorem. We further generalize this into an iterative procedure
whose invariant functions are shown uniquely to be the reciprocal distribution, and which demonstrate Hamming’s
“contagiousness”. Uniqueness obtains because the arbitrary (or “random” in this sense) underlying pdf eliminates
any particular solutions in the invariant functions and leaves only the general solution. Our procedure generalizes the
work of Hamming[16], and to the best of our knowledge is both new and useful. We show alternatively by invoking
maximum entropy for a size-class distribution function that the reciprocal distribution again obtains as the unique
solution. We conclude by speculating on the universality and applications of these results, with particular emphasis
on minimizing errors in computations of various types.
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RESULTS

Invariance under changes in units and the law of total probability

In most scientific applications a stochastic variable x is assigned to the random values of some physical quantity.
This quantity carries either physical dimensions (e.g., length or volume) or units (such as the number of base pairs
in a genome). However, because it refers to probabilities, the probability measure F (x) · dx that characterizes x must
be dimensionless and unitless.
Hence, in order to remove units or dimensions from the measure it is necessary to introduce a parameter that results

both in a dimensionless and unitless stochastic variable, as well as in a bona fide probability measure. Calling this
parameter σ, for a specific value of σ we can rescale the physical variable x into a dimensionless and unitless random
variable by just replacing x with z = x/σ. (We also assume for simplicity that x is positive semi-definite.) Then we
can always introduce a normalizable function g such that

F (x) =
1

σ
g
(x

σ

)

, (2)

and that has the correct properties expected from a probability measure. In other words, we can use a parameter σ
to remove units or dimensions from the probability measure.
Familiar examples of distributions of the type g are the uniform distribution, gu(z) = θ(1 − z), the Gaussian

distribution, gG(z) = 2√
π
exp (−z2), and the exponential distribution, ge(z) = exp (−z), all of which satisfy the

normalization condition:
∫∞
0

dz g(z) = 1. Heaviside step functions can be used for those cases where g(z) is only
non-vanishing in an interval, such as z = [a, b], as was done above for the uniform distribution.
But the units chosen to measure x are, of course, arbitrary. For example, if x is a length, the units could be meter,

millimeter, Angstrom, or even fathom, furlong, league, etc. In other words, the choice of units is itself arbitrary [18]
and we can think of σ as a random variable with a distribution function h(σ). Thus the problem we must study
involves the combination of two stochastic variables. We can conveniently remove the scale and avoid the issue of
units by using the Law of Total Probability [19] to combine the distribution g with a distribution of scale choices to
produce a distribution G(x):

G(x) =

∫ ∞

0

dσ
g(x |σ)

σ
h(σ) , (3)

where now G(x) and h(σ) are interpreted as the marginal probabilities for events x and σ, and g(x |σ) represents the
conditional probability for x given σ. This well known law captures the intuitively clear statement that the probability
that event x occurs is determined by summing the product of the probabilities for any of its antecedents σ to happen,
times the conditional probability that x happens, given that σ has already occurred. Convergence of the integral
for small values of σ is not a problem for x 6= 0 if g(z) vanishes sufficiently rapidly for large z. Normalizability of g
is sufficient for our purposes. The probability distribution in Eqn. (3) is fairly general and will be our template for
studying the conditions underlying the emergence of the reciprocal distribution.

The Law of Total Probability and its recursive application

Let us consider a g(x|σ) that is invariant under changes in dimensions or units. That is, let us assume that

g(x|σ) ≡ g (x/σ) , (4)

with a concomitant interpretation for g(x/σ) in the terms described in the preceding paragraph (N.B. the difference
between“|” and “/”). Changing the integration variable to z ≡ x/σ in Eqn. (4) leads to the convenient form

G(x) =

∫ ∞

0

dz

z
g(z)h(x/z) . (5)

It is important to note a property of Eqn. (5) that is a consequence of its structure: the function G(x) has an
exceptional form if h(σ) is a scale-invariant (and power–law) function. A scale-invariant function h(x/z) must be
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a power of its argument, or h(x/z) ∝ (x/z)−s for a power–law. Ignoring the (for now) irrelevant proportionality
constant, we then have

G(x) =
1

xs

∫ ∞

0

dz zs−1 g(z) (6)

for h(σ) = 1/σs. We note that the integral
∫∞
0

dz zs−1 g(z) = Ms(g) is a constant and the Mellin transform [20] of
the function g(z). This allows one to rewrite Eqn. (6) in the more compact form

G(x) =
1

xs
Ms(g) . (7)

We therefore conclude that any scale-invariant h(σ) in the integral in Eqn. (5) replicates itself in G(x) (up to
an overall constant factor). Furthermore, this constant is equal to one if h is the reciprocal distribution, since by
definition the Mellin transform in Eqn. (7) equals unity for s = 1 if g(z) is normalizable.

Iterating the Law of Total Probability and the invariant function of the iteration

With the above result in hand we are ready to tackle the following important question: what would be the result of
applying the Law of Total Probability, as written in Eqn. (3), to a repeated and independent combination of random
quantities if h is scale invariant (i.e., a power–law with exponent s > 0)?
More specifically, suppose that we have n random variables distributed according to the (in principle different)

distributions g1(z), g2(z), · · · gn(z), and that h is scale invariant. Defining the integral in Eqn. (3) or (5) to be an
integral transform operator, C, acting on h(σ), we can then operate C repeatedly on G a total of n times with (in
principle) n different distributions to produce the n-th iterate.
Denoting the result of the above operations by Gn(xn), we can then write it mathematically as

Gn(xn) = C · C · · · ·C
︸ ︷︷ ︸

n times

{h} ≡ C n{h} =
1

xs
n

[
n∏

i=1

Ms(gi)

]

, (8)

where the constant in the large bracket is unity for s = 1 and if each g is normalizable, as assumed. Equation (8)
follows immediately from Eqn. (6) in a natural way: each succeeding application of C regenerates the function h
and thus reproduces the previous application, except for an overall constant. This is of course the “contagiousness”
or “persistence” property noted by Hamming, which is the inevitable (unavoidable) result of using a scale-invariant
prior function h in Eqn. (5). (We note in passing that Hamming referred to scale-invariant distributions, but actually
treated and discussed only the reciprocal distribution.)
We can extend and unify our discussion by examining the fixed-point functions, or more precisely the invariant

functions, of the iteration procedure in Eqn. (8). This is done by replacing Gn with h, and results in

h = C n{h} (9)

for any n. Thus the invariant function of the iterative procedure introduced in Eqn. (8) is the reciprocal distribution,
since the bracketed constant in that equation with multiple arbitrary distributions (and therefore normalizable) gn
will only equal unity for s = 1.
This result should not come as a complete surprise: an invariant function cannot depend on the details of the

arbitrary gn. The scale σ in the gn will couple to any scale in h(σ) to produce arbitrary results unless h is scale
invariant, which is easy to demonstrate using a variety of simple distributions. Furthermore, the reciprocal distribution
can be shown to be the unique solution when g is the uniform distribution. Invoking a set of arbitrary pdf’s (i.e., the
gn) is similar in spirit to Hill’s “random distributions.” In our case it rules out any particular solutions to Eqn. (9),
which will be different for each choice of g, but allows the scale–invariant general solutions.
Consequently, the “persistence” or “contagiousness” of the reciprocal distribution is a property of the

invariant-function solutions of the iterative procedure introduced in Eqn. (8).
The preceding narrative was predicated on developing an understanding of the “persistence” of the reciprocal

distribution. Nevertheless, we emphasize that the behavior of Eqn. (9) for n = 1 is all that is needed in order to
specify the reciprocal distribution as the unique solution of

h(x) =

∫ ∞

0

dσ

σ
gi

(x

σ

)

h(σ) , (10)
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where gi is any member of the set of arbitrary normalizable pdf’s {g1, g2, · · ·}. The general solution is clearly the
reciprocal distribution, while any particular solution will be determined by the intrinsic properties of a particular
pdf, and cannot be a solution for all of them (or even a few of them).

DISCUSSION

Selected applications to computing and to minimal truncation errors

Scale invariance (which only restricts h(x) to a general power law: x−s) is thus seen to be a necessary condition for
the emergence of the reciprocal pdf (uniquely s = 1) and its cumulative distribution function that leads to Benford’s
Law of Significant Digits. A sufficient condition is that the reciprocal pdf emerge when in contact with arbitrary
members of the set of normalizable pdf’s. Alternatively, requiring an invariant-function solution to the “contagion”
process leads immediately and uniquely to the reciprocal distribution.

The reciprocal distribution and its contagiousness are “universal” consequences of the repeated application

of the Law of Total Probability

We have established above that when combining data distributed according to a variety of pdf’s into a common pdf
for the result, the presence of scale invariance in at least one of the distributions for the data being combined leads
to a scale-invariant common distribution. Moreover, if one of the distributions is the reciprocal, then all subsequent
combined data is distributed according to the reciprocal distribution. It is like a mathematical paraphrasing of the
popular 17th century English proverb that “Once a poor, always a poor” into “Once Reciprocal/Benford, always
Reciprocal/Benford”.
The relationship of the reciprocal distribution to the invariant functions of the iterated Law of Total Probability

was derived above. We wish to suggest that this relationship is behind the abundant number and the wide spectrum
of phenomena where Benford’s Law of Significant Digits has been found to apply. Given the nature of these tightly
constrained iterations, one can also envision how the reciprocal distribution and the associated Benford’s Law of
Significant Digits could be considered universal in a sense akin [21] to the one used in condensed matter theory and
for critical phenomena. We note that invariant-function solutions to iterative procedures are both extremely common
and quite important in fields as diverse as chaotic dynamics [22], theoretical ecology [23], and many others.
In some sense, this result emerges as a consequence of the fact that the reciprocal distribution is the invariant

function for iterations of the Law of Total Probability applied to algorithmic combination of physical data. Of course,
it follows from the preceding analysis, that this also will be the case if one were to combine any data together with
data that is purely numerical and classified according to first digits.

Size - Classes and Maximum Entropy

In addition to the properties just discussed, the reciprocal distribution has a remarkable property that impacts data
transmission for applications in communication theory.
It follows from the functional form of the reciprocal distribution that the mean of reciprocally distributed random

variables is a constant over any uniform interval. If we could associate this mean with a probability distribution,
then by grouping Benford–distributed data into uniformly distributed packages (corresponding to this average value)
we could communicate those packages at the maximum information rate [24].
We can formally implement the words above by considering the notion of size-classes [25]. To that end we introduce

the following construction for an arbitrary pdf, p(x):

∆Φ[G[j]] ≡

∫ G[j]

G[j−1]

dx x p(x) ≡ Φ[G[j]]− Φ[G[j − 1]] , (11)

where G[j] and G[j − 1] denote the upper and lower values of the sizes contained within the size-class indexed by j.
Since p(x) is the pdf for x taking values between xmin and xmax, we must have

∫ xmax

xmin

dx p(x) = 1 . (12)
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The mean of x with respect to p(x) is then given by

〈x〉 =

∫ xmax

xmin

dx · x · p(x) . (13)

The probability that the values of the variable x fall in the class j (i.e., between G[j] and G[j − 1]) is determined
by a new pdf, p∗(j):

p∗(j) =

∫ G[j]

G[j−1]

dx
x

〈x〉
p(x) =

∆Φ[G[j]]

〈x〉
, (14)

with the constraint from Eqns. (12) and (13) that

jmax∑

j=1

p∗(j) = 1 , (15)

where jmax is the number of size-classes into which the interval [xmin, xmax] is partitioned. Thus for any pdf, size-classes
and an associated pdf can be introduced.
It is straightforward to show that the Benford distribution has the property that uniform size-classes are themselves

uniformly distributed. If we require p∗(j) to be a constant (viz., α > 1) that is independent of j, then

Φ[G[j]]− Φ[G[j − 1]] =
1

α
, (16)

and the size-classes G[j]−G[j − 1] from Eqns. (14) and (16) that are found for p(x) = a/x must satisfy

1

α
=

∫ G[j]

G[j−1]

dx
x

〈x〉
p(x) =

a

〈x〉
(G[j]−G[j − 1]) . (17)

That is, the classes that satisfy Eqn. (17) are uniformly distributed and therefore have maximum entropy; the
information they contain can be transmitted at the maximum achievable rate: H = + ln(α).
For the reciprocal-distribution example we have

G[j]−G[j − 1] =
〈x〉

a · α
=

xmax − xmin

α
≡ β , (18)

where Eqn. (13) has been used. The recursion relation in Eqn. (18) for the size-class boundary G[j] is solved by

G[j] = βj + r , (19)

where r is an arbitrary constant. The integer quantity jmax in Eqn.(15) can then be shown to equal α (which must
also be integer).
Therefore, Benford-distributed data grouped into such size-classes will be communicated at the maximum achievable

rate1. Combining this result with the contagion property of Benford leads to the conclusion that the contagiousness
of the reciprocal distribution via the LTP implies that a grouping into size-classes of stochastic variables, at least
one of which is Benford distributed, has maximal entropy as long as the grouping is uniformly partitioned. These
classes or groupings of the original data can then be transmitted at the maximum achievable rate.

1 Note that for any distribution we can always introduce the notion of an f-class (corresponding to a function f) by constructing the

equivalent of p∗(j) in Eqn. (14). All one needs to do is replace x
〈x〉

p(x) in Eqn. (14) by f(x)
〈f(x)〉

p(x), where f(x) is a function of the

stochastic variable x and represents some physical variable according to which we wish to sort the system into classes. If we require
that the resulting p∗(j; f) be constant, then the transmission of these classes will take place at the maximum rate. It is particularly
interesting that for the Zipf distribution, p(x) ∝ 1/x2, the “distortion-classes” that result from choosing f(x) ∝ x2 achieve maximum
entropy in the same way as the size-classes do for the Benford distribution.
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Round-off error and the Reciprocal Distribution. Applications to computing and to evolutionary biology

The above observation can be turned into a principle of design that can be applied if one is interested in achieving
maximum precision (equivalent to minimizing resulting errors by always choosing the smallest intermediate errors) in
calculational situations where errors are unavoidable, as is the case for round-off errors occurring in automatic digital
computation. This is what was suggested by Hamming’s result mentioned in the introduction to this paper.
In fact, the contagiousness property of the reciprocal and the associated preponderance of mantissas starting with

smaller digits indicates that distributing quantities according to the reciprocal distribution will produce maximal
reduction in round-off errors dictated by the necessary truncation of results of operations due to the fixed and finite
word length of the machine on which the operation takes place.
This contagiousness property of the reciprocal pdf, combined with its relationship to the Benford Law of Significant

Digits, was then used by Hamming to argue that the mantissas of the round-off errors that result from the arithmetical
combination of random quantities are always smaller than what would result if they were uniformly distributed. Hence
the arithmetical combination of quantities of which at least one is reciprocally distributed leads to smaller errors than
those resulting from the combination of all-uniformly distributed quantities.
This implies for round-off error that it “pays” to design the data to be reciprocally distributed, since when combined

it leads to minimal errors. This leads to a maximum reduction of the unavoidable round-off errors inherent [26] to any
calculation done with digital computers that, of course, are ultimately due to the fixed nature of their word length [27,
28]. Indeed this was discussed by Schatte [29] as the basis for a strategy designed to reduce the accumulation of errors
in the operation of digital machines (cf. also [30]). We combine this property with the above result that maximum
entropy is achieved by grouping Benford-distributed data into uniformly sized classes. This demonstrates that
those groups will automatically be the fastest transmitted packets with the smallest possible errors in
both their transmission and contents.
In this context we note that the fundamental operations in information handling by the genomes of all forms of life

are controlled by the so-called cDNA fraction of the genome. This fraction comprises the fundamental genes in the
living system, and are contained in objects called Open Reading Frames (ORFs). For all living systems the ORFs are
distributed according to a reciprocal distribution of the full genome size [13], not just of only the cDNA fraction. This
suggests to us that Life, by means of the trial and error processes of evolution, may have “discovered” the most robust
and lowest-error strategy for storing and transmitting information. The key ingredient for distributing quantities
with maximal fidelity using the Law of Total Probability (equivalent to lowest possible error) is to incorporate the
reciprocal distribution. Subsequently the processes depending on these fundamental genes will be the most robust
and will therefore have a competitive advantage as a base to persist, survive and not become extinct.
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